Information physics fundamentals of nanophotonics.
نویسندگان
چکیده
Nanophotonics has been extensively studied with the aim of unveiling and exploiting light-matter interactions that occur at a scale below the diffraction limit of light, and recent progress made in experimental technologies--both in nanomaterial fabrication and characterization--is driving further advancements in the field. From the viewpoint of information, on the other hand, novel architectures, design and analysis principles, and even novel computing paradigms should be considered so that we can fully benefit from the potential of nanophotonics. This paper examines the information physics aspects of nanophotonics. More specifically, we present some fundamental and emergent information properties that stem from optical excitation transfer mediated by optical near-field interactions and the hierarchical properties inherent in optical near-fields. We theoretically and experimentally investigate aspects such as unidirectional signal transfer, energy efficiency and networking effects, among others, and we present their basic theoretical formalisms and describe demonstrations of practical applications. A stochastic analysis of light-assisted material formation is also presented, where an information-based approach provides a deeper understanding of the phenomena involved, such as self-organization. Furthermore, the spatio-temporal dynamics of optical excitation transfer and its inherent stochastic attributes are utilized for solution searching, paving the way to a novel computing paradigm that exploits coherent and dissipative processes in nanophotonics.
منابع مشابه
Chip-integrated Nanophotonic Structures for Classical and Quantum Devices
Chip-integrated nanophotonics investigates the interaction of light with nanostructures integrated on a chip. Lying at the intersection of condensed matter physics, optics, nanotechnology, and materials science, nanophotonics draws upon expertise from broad areas of physics and engineering, while presenting major opportunities to advance fundamental physics and transformative photonic technolog...
متن کاملPrinciples of nanoscience: an overview.
The scientific basis of nanotechnology as envisaged from the first principles is compared to bulk behavior. Development of nanoparticles having controllable physical and electronic properties has opened up possibility of designing artificial solids. Top down and bottom up approaches are emphasized. The role of nanoparticle (quantum dots) application in nanophotonics (photovoltaic cell), and dru...
متن کاملSurface Plasmonic Fields in NANOPHOTONICS
Surface Plasmonic Fields in NANOPHOTONICS The fi eld of nanophotonics is fi nding myriad applications in information technology, health care, lighting, sensing and national security. This article explores the ultrafast electrodynamics of surface plasmonpolariton fi elds on nanostructured metaldielectric boundaries, and describes how to make a sensor to measure chemical reactions at a surface by...
متن کاملChapter 9 a Pplications : N Anophotonics and P Lasmonics
Both nanophotonics and plasmonics concern investigations into building, manipulating, and characterizing optically active nanostructures with a view to creating new capabilities in instrumentation for the nanoscale, chemical and biomedical sensing, information and communications technologies, enhanced solar cells and lighting, disease treatment, environmental remediation, and many other applica...
متن کاملWorkshop Sessions Opening Remarks Welcome Address Session I: Atomic and Molecular Optics I Quantum Matter Built from Nanoscopic Lattices of Atoms and Photons
New paradigms for optical physics emerge from atoms trapped in one and two-dimensional dielectric waveguides [1,2]. Photons propagating in the guided modes of the waveguides can mediate long-range atom-atom interactions. In a complimentary fashion, photon-photon interactions can arise by way of the underlying lattice of atoms. This new future of atom nanophotonics has the potential to provide t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Reports on progress in physics. Physical Society
دوره 76 5 شماره
صفحات -
تاریخ انتشار 2013